
Exact results on Landau-level broadening

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 L825

(http://iopscience.iop.org/0305-4470/24/15/007)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 11:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 24 (1991) L825-LS31. Printed in the UK 

LE‘ITER TO THE EDITOR 

Exact results on Landau-level broadening 

Kurt Broderix, Nils Heldt and Hajo Leschke 
lnstitut fur Theoretische Physik, UniversitPt Erlangen-Nirnberg, Staudtstraise 7, W-8520 
Erlangen, Federal Republic of Germany 

Received 20 May I991 

Abstract. For an electron in the plane subjected to a perpendicular constant magnetic field 
and a homogeneous random potential we investigate the averaged density of states restricted 
to an arbitrary Landau level. We calculate the exact width for an arbitrary random potential. 
For general Gaussian random potentials we prove the existence of Gaussian tails and 
determine the decay  constant^. Furthermore, we derive Jensen-type lower and upper bounds 
to expectation values of convex functions with respect to the restricted density of states. 
Using similar bounds we estimate the effect of Landau-level mixing. 

The realization [ 11 of nearly ideal two-dimensional electron systems [2] has stimulated 
a tremendous amount of experimental and theoretical research during the past two 
decades [ l ,  31. One basic tool in studying the properties of these systems is the 
application of a magnetic field [4]. For the explanation of recent experiments [5-7] 
the early theories [SI for the gas of non-interacting electrons in two dimensions under 
the influence of a perpendicular constant magnetic field have been found to be 
insufficient [9]. This gas is characterized by the one-electron Hamiltonian given, in the 
Schradinger representation, as 

ha eB ha eB H . - -  

Here x := ( x , ,  XJ are Cartesian coordinates of the infinite plane, fi is Planck‘s constant, 
e is the elementary charge, m is the (effective) mass of the (spinless) electron, and B 
the strength of the magnetic field. 

A more adequate description of the observed phenomena should become possible, 
when extending the model (1) by the addition of a static and homogeneous random 
potential V mimicking the interaction with quenched disorder. In particular, the 
resulting Hamiltonian H:= H,+ V is believed [9] to provide a minimal model for thg 
explanation of the integral quantum Hall effect [5]. 

As well as for the understanding of this model as for the rating of its capability 
for explaining experiments, the averaged density of states (per area) D ( E ) : =  
(XIS(& - H ) l x )  is a quantity of basic importance. Here the overbar denotes the average 
with respect to the probability distribution of V.  

While over the years many approximations to D, for example [lo-141, have been 
devised, only a few exact results are available. The density of states D is exactly known 
for a random potential which is either constantly correlated [15,16] or Cauchy-Lorentz 
white noise 116, 171. Moreover, for Gaussian randomtent ia l s  the leading low-energy 
behaviour of D is known to be Gaussian [18], if V ( x ) ’ < m .  
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Often the Hamiltonian H is restricted to the eigenspace of the unperturbed Hamil- 
tonian Ho belonging to the nth eigenvalue E. := ( 2 n  + l)heE/Zm, that is, the nth Landau 
level (n =0,1,2,. . .).The corresponding projection operator E. is given in the position 
representation as 

(2) 
’ where L. is the nth Laguerre polynomial [ 191 and I := (h/eB)”’ is the magnetic length. 

The simplification implied by this neglect of Landau-level mixing, which is believed 
to be justifiable for high magnetic fields, see [18] and below, allows for further exact 
results, namely on the averaged restricted density of states (per area) 

(3) 
This density equals the spectral density of a quantum system with one degree of 
freedom characterized by an appropriate random Hamiltonian [ Z O ] .  The most remark- 
able result [ 17,211 in this context is that Do is known for a general white-noise potential. 

In the present letter, for the first time, exact results on D. are presented for general 
n and a random potential with arbitrary correlation lengths. 

For notational convenience we will assume, without loss of generality, that the 
homogeneous random potential has zero mean V(0) = 0, and call its covariance 
V(x) V(0) =: C(x). Under these circumstances 27d2D, is a probability density on the 
real line with first moment E. and variance 

{xJE,Jx’) = ( 2 e P - I  exp{[2i(xIx; - x 2 x I )  - (x -x’)‘]/~/~}L.((x - ~ ’ ) ~ / 2 / ~ )  

D, ( E )  := (XI E,S ( E - €.HE“) E. IX). 

- 

U::= 2$d2 d€D.(&)(E -E.)’= 27d2 d2xl(OlE.!x)!‘C(x). (4) 

!O!E,!x+x’?!x+x’IE,!x‘?= !x!E.!O!!-x’!E,!x?. ( 5 )  

I I 
For the derivation of (4) one observes ff; =2rr12(O(EnVEnVE.(0) and uses the formula 

The simple-looking’relation (4) is one of our major results, because un is naturally 
interpreted as the width of the nth Landau level broadened by an arbitrary random 
potential. 

Remarks 
The q-a-tiej cn has ear!ie: appeared i:: :he !i!erakre [!I, !3, !8], bs: ha: ne: bee:: 

identified with the exact width of D. there. 
The variance U: never exceeds the single-site variance of the random potential. 

More generally u:smin{C(O), supx c (k ) /2?rI2} .  Here E ( k ) : =  d2xC(x) exp{-ikx) 
is the Fourier transform of C which is non-negative. 

are bounded, one can show that the broadening vanishes in the 
high Laxdza=!eve! ! h i t ,  thrt is, !izn-- ni -8. %s, ix turc, imp!ies by the Chehyshev 
inequality that the density of states equals the unperturbed one asymptotically 
limn+- D.(E+ E,,) = 8(~)/2?rl’. This result demonstrates that the non-trivial densities 
calculated in the high Landau-level limit for some white-noise potentials [22] are the 
exception rather than the rule. 

If both C and 

For the often discussed example of the Gaussian covariance 

(63 

the level width can explicitly be calculated as a function of the correlation length A to 

-“1/-.: C(xj = ~ ( 0 )  e-* / - ^  

(7) 
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Here P. denotes the nth Legendre polynomial [19]. In this case the above-mentioned 
upper bound on U: can be sharpened to ui(Az)<ut(Az); there is even convincing 
numerical evidence [ l l ]  for ui+,(A2)< u : ( A z ) .  We note that u:(A2) is increasing in 
A 2  and obeys the reciprocity relation u:(A2) = ( A z / ~ z ) ~ ~ ( 1 4 / A z ) ,  

While we conjecture that the monotonicity properties of the widths {U"],  found for 
the Gaussian covariance, hold true for all covariances which are decreasing as a 
function of 1x1, there are also covariances leading to rather strange broadening effects. 
For example, the oscillating covariance C(x) = C ( O ) J , , ( ~ ~ x ~ / A ) ,  with Jo denoting the 
zeroth Bessel function of the first kind [ 191 and a given correlation length A > 0, yields 
U?= C(0) e~p{-r~/A~)[L.(r~/A~)]~. Choosing /2/A2 as a zero of L.(nS I )  the nth 
Landau level is not broadened at all. Moreover, for given n 3 1 one can find 1'1 A2 
such that ug<u.?,. Finally, although c ( k )  =4d2C(0)6(A2k2-2)  is not bounded, one 
has &=O. 

We c!ose !he remarks on the exac! width nn by advancing the resu!ts for the !WO 
extreme situations of the spatial extent of correlations, separately. For the constant 
covariance C(x) = C(0) one gets ui = C(O), whereas for the delta-covariance C(x) = 
u26(x )  one finds vi= v2/2d2.  

After the discussion of the level width un as the root-mean-square of the probability 
density Z T ~ ~ D , ~  we now tum to the expectation value of an  arbitrary convex function 
E u f ( ~ )  with respect to 2nlZD.. For general f we are only able to give lower and 
upper bounds 

[ dap,,+(E).f(E)~ [ d&D.(E)f(E)< 1 dE L J ? ( E ) ~ ( E ) .  (8) 

may serve as simple approximations to D,, (see, e.g. [14]). 
The lower bound in (8) follows from the identity [17,20] 

Enf(E.HEn)E. = E . 2 d  dE D.(E)f(€) ( 1 1 )  I 
in combination with the trace version [23] of Jensen's inequality 

Tr( Ef( EAE ) E  ) 6 Tr( Ef( A ) E )  A=A' E = E ' E  (12) 

for the choice A = &HE. and E = E.I$)($lE.. 
For a proof of the upper bound in (8) we can assume f ( 6 . )  = O  without loss of 

generality. We apply (12) to A = E. + V, and E = E., where V,(x)  := V ( r ) O ( r - l x l )  is 
the random potential cut-off to a disk of radius r > O  centred at the origin. Finally, 

ayer2-gixg '.'e &yid. by Tr2 2.d pcsp limit r + 02, 

Remarks 

adaptation of the early proposal in [241. 
By definition, p: is a quasiclassical approximation and, therefore, the appropriate 
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For given f the lower bound in (8) may be optimized with respect to I$). As a 
consequence, the approximation p..$ may be seen as the appropriate adaptation of 
the proposals in [ 2 5 ] .  

For the special choice f (e )  =exp(-Pe)(P 20) and I$)= E./0)(2d2)1’2 the 
inequalities (8) have already appeared in [181. 

For the choicef(e) = 2 d 2 (  E - the first inequality in (8) implies that the variance 

y’,;$:=2Tl2 c dEP.JE)(E--d2= d2X f d2X’!(JI!E.IX)12C(x-X’)!(x’!E”!$)~ (13) 
J J J  

of 2a12p, ,  underestimates U: .  Additionally, it is possible to show that y:.* vanishes 
for all I$) in the high Landau-level limit n + m, if 

Choosingf(E)=B-’In(l+exp{P(~--))) in (8) leads to bounds on the averaged 
grand-canonical potential (per area) of non-interacting electrons, with the restricted 
one-electron Hamiltonian E.HE., at temperature l/pk, and with chemical potential 
fl .  In particular, weakening the lower bound in (8) t o f ( ~ . ) / 2 ~ l *  according to Jensen’s 
unequality shows that the inclusion of disorder always lowers the grand-canonical 
poteniial. 

For the simple random potentials as all the constantly correlated random potentials 
and the Cauchy-Lorentz white-noise 1161 one has pn.$ = D. = p:. 

is bounded. 

From now on we will only consider Gaussian random potentials. Clearly, for these 
potentials the density 2?rI2p, ,  is a Gaussian with variance y:,, centred at the Landau 
level E.. In this case the lower bound in (8) is an increasing function of this variance 
for all f: Therefore, the best lower bound is universally achieved by the largest variance 

r’, := SUP &+.  (14) 
$ 

Remarks 
For general covariances C the largest variance is restricted by ui/C(O) s r’. S U’,. 

For the Gaussian covariance (6) the largest variance can explicitly be determined 

T2,(A2) =[h2/(h2+ 12)jut(A2+Iz). (15) 

This results from the fact that the supremum in (14) is realized for the Hilbert-space 
vector I$”) given in the position representation as ( X \ $ ~ ) S  (x, +ix,)” exp(-xz/4IZ). In 
the subspace of the nth Landau level I$,) is most localized in the sense of minimal 
position variance. Therefore it seems plausible that I$“) maximizes y:,,. The actual 
proof, however, requires more work. Since C of (6) is isotropic, it can be based on 
m c  rriequariry yn.+-supj en,j, where 

as a function of the correlation length in terms of the width according to 

.L. :~~-.~~.,:*.~ 2 

may be interpreted [26] as the j t h  eigenvalue ( j  = 0, 1.2,. . .) ofthe isotropic two-particle 
interaction potential C(x  -x’) with the Hilbert space of each particle restricted to the 
subspace of the nth Landau ievei. since ~ 2 . , * ~ , -  ii is siiikkiii io s h ~ i  in.j G c“,~  
in order to complete the proof. For the validlty of c ” , ~  S e , ,  for general A and n we 
have found strong numerical evidence. So far we only have analytical proofs in the 
cases (i) n =0,1 for general A and (ii) C(x) = v2S(x) for general n. We close the 
remark on the Gaussian covariance with an analytical curiosity. The mapping 
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4‘- r;(L‘/2)/u;(g12) has a stable fixed point at the golden mean (&- 1)/2 independent 
of n. 

We conjecture that r’. = y:.*. remainstme for general isotropic covariances decreas- 
ing in 1x1. For n = 0 we are able to prove this assertion. The oscillating covariance 
C(x)  = C(0)Jo(f i lx l /A)  illustrates that r: = y’..+. is not generally true. For example, 
this covariance leads to yi.*o<y&, for (x l4 )a  (xI-ix2) exp{-x2/4/’} provided that 
l 2 /A2>  2. 

For the constant covariance C(x) = C(0) one immediately gets r: = C(O), whereas 
for the delta-covariance C(x) = v z 8 ( x )  one finds I”. =(uz /4?r1 ’ ) (2n) ! / (n!2”) ’ .  

For Gaussian random potentials one would intuitively expect that the density of 
states D. falls off like a Gaussian for sufficiently large I E  - E ~ [ / w ~ .  This expectation is 
supported by the fact that both densities p%+ and p r  are Gaussians. In fact, we assert 
that 

1 1 
lim T i n  D.(E + E.)=-- 

/elf- E 2r: (17) 

where the decay constant rn is defined by (14) and (13). This constitutes another major 
result of the present letter, because it establishes and determines Gaussian tails for 
arbitrary Gaussian random potentials including Gaussian white noise. 

We sketch our proof as follows. Appealing to the appropriate Tauberian theorem 
to be found, for example, in [27], it is sufficient to show that the two-sided Laplace 
transform of D. obeys 

Since the optimized lower bound in (8) forf(E) = exp{-pE} takes on the desired limit, 
there remains the construction of a suitable upper bound. The quasi-classical upper 
bound in (8) does not suffice. The construction proceeds in several steps. The Laplace 
transform of the density of states corresponding to the restricted cut-off potential 
E.V,E, is bounded from above by the Rayleigh-Ritz principle applied to E,V,E.. The 
average of this bound with respect to the random potential V is represented as a 
functional integral over V. The substitution V=: po transforms the integral into a form 
which allows for its asymptotic evaluation for p + cc by Laplace’s method in  function 
space [28]. The resulting upper limit analogous to (18) tends to r:/2 as r + m .  

Remark. The result (171, especially when combined with (15) and (7) in the case (6 ) ,  
considerably generalizes earlier results [29,30]. In [29] the decay constant r. for 
Gaussian white noise has correctly been found by optimizing y;,* over a restricted set 
of I$)-vectors. In [30], by varying over this set for n=O,  the decay constant r,,(A2) 
has correctly been found for the Gaussian covariance ( 6 ) ,  but it has erroneously been 
stated there that ri= for all isotropic covariances. 

Having discussed the restricted density of states D. to some extent, we return to 
general homogeneous random potentials with v=O and address ourselves to the 
question, in which sense Z:.=o D. may sene  to approximate the unrestrictedAdensity 
of states D. To this end, following [11,13], we introduce the densities D.(E):= 
(XI&S(E-HH)E. Ix ) .  
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We note that 25~1'6~ is a probability density on the real line with first moment E. 

and variance C(0). Unlike D. the density D. is in general not symmetric with respect 
to E., if V and - V have the same distribution. For Gaussian random potentials with 
C(0) <CO we suspect that 0; like D has a Gaussian tail for E + -CO with decay constant 

Concerning the relation between D. and D. for general random potentials we state 
[C(O)l"'. 

the inequality 
r 

J de D.(&)f(&)S dE&(E)f(E) (19) 

formally following forf(e.) = 0 from (12) with A = Ho+ V, and E = E. after averaging, 
dividing by m2, and taking the limit r + m .  For the actual proof one has to show that 

(20) 

We conjecture that (20) generally holds provided that f(<m. So far we only 
have a proof for the case f ( ~ )  =exp{-p~}-exp{-Pe.) which is based on an upper 
bound derivable from the Feynman-Kac-It6 formula [28]. 

In the following remarks we assume that the random potential is not only 
hemegenenus but a!so isotrapic. 

Remarks 
Since the unrestricted density of states can be reconstructed [ l l ,  131 according to 

D = X ~ - o D , ,  the inequality (19) yields lower bounds to Id&D(E)f(E) for convex 
functionsf: In particular, the grand-canonical potential corresponding to  the unrestric- 
ted one-electron Hamiltonian H is overestimated when neglecting level mixing. 

Defining the absence of level mixing as the validity of X:=o D. = 0, the inequality 
(19) with f ( ~ )  =exp{-p~} shows by the invertibilify of the Laplace transformation 
that level mixing does not occur if and only if, 0, = D. for all n. The preceding 
discussion of the widths and tails of D. and D. suggests that the approximation 
6" = 0, can only be reasonable, if(2n + 1)12<< h2 is fulfilled besides the usual condition 
C(0) << ( 2 ~ ~ ) ~ .  Here A is the (smallest) correlation length of the covariance C. 
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